Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2194, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467629

RESUMO

The regulation of thymocyte development by RNA-binding proteins (RBPs) is largely unexplored. We identify 642 RBPs in the thymus and focus on Arpp21, which shows selective and dynamic expression in early thymocytes. Arpp21 is downregulated in response to T cell receptor (TCR) and Ca2+ signals. Downregulation requires Stim1/Stim2 and CaMK4 expression and involves Arpp21 protein phosphorylation, polyubiquitination and proteasomal degradation. Arpp21 directly binds RNA through its R3H domain, with a preference for uridine-rich motifs, promoting the expression of target mRNAs. Analysis of the Arpp21-bound transcriptome reveals strong interactions with the Rag1 3'-UTR. Arpp21-deficient thymocytes show reduced Rag1 expression, delayed TCR rearrangement and a less diverse TCR repertoire. This phenotype is recapitulated in Rag1 3'-UTR mutant mice harboring a deletion of the Arpp21 response region. These findings show how thymocyte-specific Arpp21 promotes Rag1 expression to enable TCR repertoire diversity until signals from the TCR terminate Arpp21 and Rag1 activities.


Assuntos
Receptores de Antígenos de Linfócitos T , Timócitos , Animais , Camundongos , Diferenciação Celular/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Timócitos/metabolismo , Timo/metabolismo
2.
J Biol Chem ; 300(2): 105648, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219816

RESUMO

Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.


Assuntos
Biossíntese de Proteínas , Ribossomos , Animais , Humanos , Ratos , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
3.
Int J Oncol ; 64(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38240084

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at advanced tumor stages with chemotherapy as the only treatment option. Transcriptomic analysis has defined a classical and basal­like PDAC subtype, which are regulated by epigenetic modification. The present study aimed to determine if drug­induced epigenetic reprogramming of pancreatic cancer cells affects PDAC subtype identity and chemosensitivity. Classical and basal­like PDAC cell lines PaTu­S, Capan­1, Capan­2, Colo357, PaTu­T, PANC­1 and MIAPaCa­2, were treated for a short (up to 96 h) and long (up to 30 weeks) period with histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors. The cells were analyzed using gene expression approaches, immunoblot analysis, and various cell assays to assess cell characteristics, such as proliferation, colony formation, cell migration and sensitivity to chemotherapeutic drugs. Classical and basal­like PDAC cell lines showed pronounced epigenetic regulation of subtype­specific genes through acetylation of lysine 27 on Histone H3 (H3K27ac). Moreover, classical cell lines revealed a significantly decreased expression of HDAC2 and increased total levels of H3K27ac in comparison with the basal­like cell lines. Following HAT inhibitor treatment, classical cell lines exhibited a loss of epithelial marker gene expression, decreased chemotherapy response gene score and increased cell migration in vitro, indicating a tumor­promoting phenotype. HDAC inhibitor treatment, however, exerted minimal reprogramming effects in both subtypes. Epigenetic reprogramming of classical and basal­like tumor cells did not have a major impact on gemcitabine response, although the gemcitabine transporter gene SLC29A1 (solute carrier family 29 member 1) was epigenetically regulated.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Histonas/genética , Histonas/metabolismo , Gencitabina , Epigênese Genética , Acetilação , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica
4.
Nucleic Acids Res ; 51(22): 12303-12324, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37956271

RESUMO

Stochastic origin activation gives rise to significant cell-to-cell variability in the pattern of genome replication. The molecular basis for heterogeneity in efficiency and timing of individual origins is a long-standing question. Here, we developed Methylation Accessibility of TArgeted Chromatin domain Sequencing (MATAC-Seq) to determine single-molecule chromatin accessibility of four specific genomic loci. MATAC-Seq relies on preferential modification of accessible DNA by methyltransferases combined with Nanopore-Sequencing for direct readout of methylated DNA-bases. Applying MATAC-Seq to selected early-efficient and late-inefficient yeast replication origins revealed large heterogeneity of chromatin states. Disruption of INO80 or ISW2 chromatin remodeling complexes leads to changes at individual nucleosomal positions that correlate with changes in their replication efficiency. We found a chromatin state with an accessible nucleosome-free region in combination with well-positioned +1 and +2 nucleosomes as a strong predictor for efficient origin activation. Thus, MATAC-Seq identifies the large spectrum of alternative chromatin states that co-exist on a given locus previously masked in population-based experiments and provides a mechanistic basis for origin activation heterogeneity during eukaryotic DNA replication. Consequently, our single-molecule chromatin accessibility assay will be ideal to define single-molecule heterogeneity across many fundamental biological processes such as transcription, replication, or DNA repair in vitro and ex vivo.


Assuntos
Origem de Replicação , Saccharomyces cerevisiae , Cromatina/genética , DNA , Replicação do DNA , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
J Cancer Res Clin Oncol ; 149(19): 17361-17369, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840045

RESUMO

PURPOSE: Exercise typically reduces tumour growth, proliferation and improves outcomes. Many of these effects require exercise to change gene expression within a tumour, but whether exercise  actually affects gene expression within a tumour has not been investigated yet. The aim of this study was, therefore, to find out whether one bout of endurance exercise alters gene expression and proliferation in a C26 carcinoma in immunocompetent mice. METHODS: BALB/c were injected with C26 colon carcinoma cells. Once the tumours had formed, the mice either ran for 65 min with increasing intensity or rested before the tumour was dissected. The tumours were then analysed by RNA-Seq and stained for the proliferation marker KI67. RESULTS: One bout of running for 65 min did not systematically change gene expression in C26 carcinomas of BALB/c mice when compared to BALB/c mice that were rested. However, when analysed for sex, the expression of 17, mostly skeletal muscle-related genes was higher in the samples of the female mice taken post-exercise. Further histological analysis showed that this signal likely comes from the presence of muscle fibres from the panniculus carnosus muscle inside the tumours. Also, we found no differences in the positivity for the proliferation marker KI67 in the control and exercise C26 carcinomas. CONCLUSION: A bout of exercise did not systematically affect gene expression or proliferation in C26 carcinomas in immunocompetent BALB/c mice.


Assuntos
Carcinoma , Neoplasias do Colo , Feminino , Animais , Camundongos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Neoplasias do Colo/patologia , Músculo Esquelético/metabolismo , Carcinoma/patologia , Proliferação de Células/genética , Expressão Gênica
6.
Proc Natl Acad Sci U S A ; 120(16): e2210047120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040405

RESUMO

CD8+ T cells are crucial for the clearance of viral infections. During the acute phase, proinflammatory conditions increase the amount of circulating phosphatidylserine+ (PS) extracellular vesicles (EVs). These EVs interact especially with CD8+ T cells; however, it remains unclear whether they can actively modulate CD8+ T cell responses. In this study, we have developed a method to analyze cell-bound PS+ EVs and their target cells in vivo. We show that EV+ cell abundance increases during viral infection and that EVs preferentially bind to activated, but not naive, CD8+ T cells. Superresolution imaging revealed that PS+ EVs attach to clusters of CD8 molecules on the T cell surface. Furthermore, EV-binding induces antigen (Ag)-specific TCR signaling and increased nuclear translocation of the transcription factor Nuclear factor of activated T-cells (NFATc1) in vivo. EV-decorated but not EV-free CD8+ T cells are enriched for gene signatures associated with T-cell receptor signaling, early effector differentiation, and proliferation. Our data thus demonstrate that PS+ EVs provide Ag-specific adjuvant effects to activated CD8+ T cells in vivo.


Assuntos
Vesículas Extracelulares , Viroses , Humanos , Linfócitos T CD8-Positivos , Fosfatidilserinas/metabolismo , Vesículas Extracelulares/metabolismo , Viroses/metabolismo , Diferenciação Celular
7.
Nature ; 616(7958): 836-842, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020028

RESUMO

The origin recognition complex (ORC) is essential for initiation of eukaryotic chromosome replication as it loads the replicative helicase-the minichromosome maintenance (MCM) complex-at replication origins1. Replication origins display a stereotypic nucleosome organization with nucleosome depletion at ORC-binding sites and flanking arrays of regularly spaced nucleosomes2-4. However, how this nucleosome organization is established and whether this organization is required for replication remain unknown. Here, using genome-scale biochemical reconstitution with approximately 300 replication origins, we screened 17 purified chromatin factors from budding yeast and found that the ORC established nucleosome depletion over replication origins and flanking nucleosome arrays by orchestrating the chromatin remodellers INO80, ISW1a, ISW2 and Chd1. The functional importance of the nucleosome-organizing activity of the ORC was demonstrated by orc1 mutations that maintained classical MCM-loader activity but abrogated the array-generation activity of ORC. These mutations impaired replication through chromatin in vitro and were lethal in vivo. Our results establish that ORC, in addition to its canonical role as the MCM loader, has a second crucial function as a master regulator of nucleosome organization at the replication origin, a crucial prerequisite for efficient chromosome replication.


Assuntos
Cromatina , Complexo de Reconhecimento de Origem , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Replicação do DNA , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Methods Mol Biol ; 2611: 121-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807068

RESUMO

Digestion with restriction enzymes is a classical approach for probing DNA accessibility in chromatin. It allows to monitor both the cut and the uncut fraction and thereby the determination of accessibility or occupancy (= 1 - accessibility) in absolute terms as the percentage of cut or uncut molecules, respectively, out of all molecules. The protocol presented here takes this classical approach to the genome-wide level. After exhaustive restriction enzyme digestion of chromatin, DNA is purified, sheared, and converted into libraries for high-throughput sequencing. Bioinformatic analysis counts uncut DNA fragments as well as DNA ends generated by restriction enzyme digest and derives thereof the fraction of accessible DNA. This straightforward principle is technically challenged as preparation and sequencing of the libraries leads to biased scoring of DNA fragments. Our protocol includes two orthogonal approaches to correct for this bias, the "corrected cut-uncut" and the "cut-all cut" method, so that accurate measurements of absolute accessibility or occupancy at restriction sites throughout a genome are possible. The protocol is presented for the example of S. cerevisiae chromatin but may be adapted for any other species.


Assuntos
Cromatina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , DNA/genética , Genoma , Enzimas de Restrição do DNA/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
9.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36633909

RESUMO

Newborns are at high risk of developing neonatal sepsis, particularly if born prematurely. This has been linked to divergent requirements the immune system has to fulfill during intrauterine compared with extrauterine life. By transcriptomic analysis of fetal and adult neutrophils, we shed new light on the molecular mechanisms of neutrophil maturation and functional adaption during fetal ontogeny. We identified an accumulation of differentially regulated genes within the noncanonical NF-κB signaling pathway accompanied by constitutive nuclear localization of RelB and increased surface expression of TNF receptor type II in fetal neutrophils, as well as elevated levels of lymphotoxin α in fetal serum. Furthermore, we found strong upregulation of the negative inflammatory regulator A20 (Tnfaip3) in fetal neutrophils, which was accompanied by pronounced downregulation of the canonical NF-κB pathway. Functionally, overexpressing A20 in Hoxb8 cells led to reduced adhesion of these neutrophil-like cells in a flow chamber system. Conversely, mice with a neutrophil-specific A20 deletion displayed increased inflammation in vivo. Taken together, we have uncovered constitutive activation of the noncanonical NF-κB pathway with concomitant upregulation of A20 in fetal neutrophils. This offers perfect adaption of neutrophil function during intrauterine fetal life but also restricts appropriate immune responses particularly in prematurely born infants.


Assuntos
NF-kappa B , Infiltração de Neutrófilos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Inflamação , Sepse Neonatal/genética , Sepse Neonatal/metabolismo , Infiltração de Neutrófilos/genética , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-36702538

RESUMO

BACKGROUND AND OBJECTIVES: Antibodies to CD20 efficiently reduce new relapses in multiple sclerosis (MS), and ocrelizumab has been shown to be effective also in primary progressive MS. Although anti-CD20 treatments efficiently deplete B cells in blood, some B cells and CD20- plasma cells persist in lymphatic organs and the inflamed CNS; their survival is regulated by the B cell-activating factor (BAFF)/A proliferation-inducing ligand (APRIL) system. The administration of a soluble receptor for BAFF and APRIL, atacicept, unexpectedly worsened MS. Here, we explored the long-term effects of ocrelizumab on immune cell subsets as well as on cytokines and endogenous soluble receptors comprising the BAFF-APRIL system. METHODS: We analyzed immune cell subsets and B cell-regulating factors longitudinally for up to 2.5 years in patients with MS treated with ocrelizumab. In a second cohort, we determined B-cell regulatory factors in the CSF before and after ocrelizumab. We quantified the cytokines BAFF and APRIL along with their endogenous soluble receptors soluble B-cell maturation antigen (sBCMA) and soluble transmembrane activator and calcium-modulator and cyclophilin ligand (CAML) interactor (sTACI) using enzyme-linked immunosorbent assays (ELISAs). In addition, we established an in-house ELISA to measure sTACI-BAFF complexes. RESULTS: Ocrelizumab treatment of people with MS persistently depleted B cells and CD20+ T cells. This treatment enhanced BAFF and reduced the free endogenous soluble receptor and decoy sTACI in both serum and CSF. Levels of sTACI negatively correlated with BAFF levels. Reduction of sTACI was associated with formation of sTACI-BAFF complexes. DISCUSSION: We describe a novel effect of anti-CD20 therapy on the BAFF-APRIL system, namely reduction of sTACI. Because sTACI is a decoy for APRIL, its reduction may enhance local APRIL activity, thereby promoting regulatory IgA+ plasma cells and astrocytic interleukin (IL)-10 production. Thus, reducing sTACI might contribute to the beneficial effect of anti-CD20 as exogenous sTACI (atacicept) worsened MS. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that endogenous sTACI in blood and CSF is decreased after ocrelizumab treatment.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Proteína Transmembrana Ativadora e Interagente do CAML , Linfócitos B , Citocinas
11.
Proteomics ; 23(9): e2200179, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36571325

RESUMO

Data-independent acquisition (DIA) of tandem mass spectrometry spectra has emerged as a promising technology to improve coverage and quantification of proteins in complex mixtures. The success of DIA experiments is dependent on the quality of spectral libraries used for data base searching. Frequently, these libraries need to be generated by labor and time intensive data dependent acquisition (DDA) experiments. Recently, several algorithms have been published that allow the generation of theoretical libraries by an efficient prediction of retention time and intensity of the fragment ions. Sequential windowed acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) is a DIA method that can be applied at an unprecedented speed, but the fragmentation spectra suffer from a lower quality than data acquired on Orbitrap instruments. To reliably generate theoretical libraries that can be used in SWATH experiments, we developed deep-learning for SWATH analysis (dpSWATH), to improve the sensitivity and specificity of data generated by Q-TOF mass spectrometers. The theoretical library built by dpSWATH allowed us to increase the identification rate of proteins compared to traditional or library-free methods. Based on our analysis we conclude that dpSWATH is a superior prediction framework for SWATH-MS measurements than other algorithms based on Orbitrap data.


Assuntos
Aprendizado Profundo , Espectrometria de Massas em Tandem/métodos , Proteínas , Algoritmos , Bases de Dados Factuais
12.
Sci Rep ; 12(1): 20987, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470941

RESUMO

Signal-Peptide Peptidase Like-3 (SPPL3) is an intramembrane cleaving aspartyl protease that causes secretion of extracellular domains from type-II transmembrane proteins. Numerous Golgi-localized glycosidases and glucosyltransferases have been identified as physiological SPPL3 substrates. By SPPL3 dependent processing, glycan-transferring enzymes are deactivated inside the cell, as their active site-containing domain is cleaved and secreted. Thus, SPPL3 impacts on glycan patterns of many cellular and secreted proteins and can regulate protein glycosylation. However, the characteristics that make a substrate a favourable candidate for SPPL3-dependent cleavage remain unknown. To gain insights into substrate requirements, we investigated the function of a GxxxG motif located in the transmembrane domain of N-acetylglucosaminyltransferase V (GnTV), a well-known SPPL3 substrate. SPPL3-dependent secretion of the substrate's ectodomain was affected by mutations disrupting the GxxxG motif. Using deuterium/hydrogen exchange and NMR spectroscopy, we studied the effect of these mutations on the helix flexibility of the GnTV transmembrane domain and observed that increased flexibility facilitates SPPL3-dependent shedding and vice versa. This study provides first insights into the characteristics of SPPL3 substrates, combining molecular biology, biochemistry, and biophysical techniques and its results will provide the basis for better understanding the characteristics of SPPL3 substrates with implications for the substrates of other intramembrane proteases.


Assuntos
Ácido Aspártico Endopeptidases , Proteínas de Membrana , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Complexo de Golgi/metabolismo , Glicosilação , Polissacarídeos/metabolismo
13.
Cells ; 11(20)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291154

RESUMO

Since their initial description by Elie Metchnikoff, phagocytes have sparked interest in a variety of biologic disciplines. These important cells perform central functions in tissue repair and immune activation as well as tolerance. Myeloid cells can be immunoinhibitory, particularly in the tumor microenvironment, where their presence is generally associated with poor patient prognosis. These cells are highly adaptable and plastic, and can be modulated to perform desired functions such as antitumor activity, if key programming molecules can be identified. Human clear cell renal cell carcinoma (ccRCC) is considered immunogenic; yet checkpoint blockades that target T cell dysfunction have shown limited clinical efficacy, suggesting additional layers of immunoinhibition. We previously described "enriched-in-renal cell carcinoma" (erc) DCs that were often found in tight contact with dysfunctional T cells. Using transcriptional profiling and flow cytometry, we describe here that ercDCs represent a mosaic cell type within the macrophage continuum co-expressing M1 and M2 markers. The polarization state reflects tissue-specific signals that are characteristic of RCC and renal tissue homeostasis. ErcDCs are tissue-resident with increasing prevalence related to tumor grade. Accordingly, a high ercDC score predicted poor patient survival. Within the profile, therapeutic targets (VSIG4, NRP1, GPNMB) were identified with promise to improve immunotherapy.


Assuntos
Produtos Biológicos , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/patologia , Macrófagos/metabolismo , Células Dendríticas , Plásticos/metabolismo , Produtos Biológicos/metabolismo , Microambiente Tumoral , Glicoproteínas de Membrana/metabolismo
14.
Blood ; 140(10): 1104-1118, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35878001

RESUMO

T-cell-recruiting bispecific molecule therapy has yielded promising results in patients with hematologic malignancies; however, resistance and subsequent relapse remains a major challenge. T-cell exhaustion induced by persistent antigen stimulation or tonic receptor signaling has been reported to compromise outcomes of T-cell-based immunotherapies. The impact of continuous exposure to bispecifics on T-cell function, however, remains poorly understood. In relapsed/refractory B-cell precursor acute lymphoblastic leukemia patients, 28-day continuous infusion with the CD19xCD3 bispecific molecule blinatumomab led to declining T-cell function. In an in vitro model system, mimicking 28-day continuous infusion with the half-life-extended CD19xCD3 bispecific AMG 562, we identified hallmark features of exhaustion arising over time. Continuous AMG 562 exposure induced progressive loss of T-cell function (day 7 vs day 28 mean specific lysis: 88.4% vs 8.6%; n = 6; P = .0003). Treatment-free intervals (TFIs), achieved by AMG 562 withdrawal, were identified as a powerful strategy for counteracting exhaustion. TFIs induced strong functional reinvigoration of T cells (continuous vs TFI-specific lysis on day 14: 34.9% vs 93.4%; n = 6; P < .0001) and transcriptional reprogramming. Furthermore, use of a TFI led to improved T-cell expansion and tumor control in vivo. Our data demonstrate the relevance of T-cell exhaustion in bispecific antibody therapy and highlight that T cells can be functionally and transcriptionally rejuvenated with TFIs. In view of the growing number of bispecific molecules being evaluated in clinical trials, our findings emphasize the need to consider and evaluate TFIs in application schedules to improve clinical outcomes.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígenos CD19 , Antineoplásicos/uso terapêutico , Humanos , Imunoterapia/métodos , Linfoma de Células B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Linfócitos T
15.
Front Immunol ; 13: 895519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784369

RESUMO

The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.


Assuntos
Células Endoteliais , Degeneração Macular , Corioide , Proteínas do Sistema Complemento , Humanos , Degeneração Macular/genética , Retina
16.
Cell Rep ; 38(5): 110303, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108544

RESUMO

Across the animal kingdom, multivalency discriminates antibodies from all other immunoglobulin superfamily members. The evolutionary forces conserving multivalency above other structural hallmarks of antibodies remain, however, incompletely defined. Here, we engineer monovalent either Fc-competent or -deficient antibody formats to investigate mechanisms of protection of neutralizing antibodies (nAbs) and non-neutralizing antibodies (nnAbs) in virus-infected mice. Antibody bivalency enables the tethering of virions to the infected cell surface, inhibits the release of virions in cell culture, and suppresses viral loads in vivo independently of Fc gamma receptor (FcγR) interactions. In return, monovalent antibody formats either do not inhibit virion release and fail to protect in vivo or their protective efficacy is largely FcγR dependent. Protection in mice correlates with virus-release-inhibiting activity of nAb and nnAb rather than with their neutralizing capacity. These observations provide mechanistic insights into the evolutionary conservation of antibody bivalency and help refining correlates of nnAb protection for vaccine development.


Assuntos
Anticorpos Antivirais/farmacologia , Antivirais/farmacologia , Anticorpos Anti-HIV/farmacologia , Receptores Fc/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Epitopos/efeitos dos fármacos , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Imunoglobulina G/efeitos dos fármacos , Imunoglobulina G/imunologia , Camundongos Endogâmicos C57BL , Receptores de IgG/efeitos dos fármacos , Receptores de IgG/imunologia
17.
Cells ; 11(3)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159329

RESUMO

The oligodendrocyte progenitors (OPCs) are at the front of the glial reaction to the traumatic brain injury. However, regulatory pathways steering the OPC reaction as well as the role of reactive OPCs remain largely unknown. Here, we compared a long-lasting, exacerbated reaction of OPCs to the adult zebrafish brain injury with a timely restricted OPC activation to identify the specific molecular mechanisms regulating OPC reactivity and their contribution to regeneration. We demonstrated that the influx of the cerebrospinal fluid into the brain parenchyma after injury simultaneously activates the toll-like receptor 2 (Tlr2) and the chemokine receptor 3 (Cxcr3) innate immunity pathways, leading to increased OPC proliferation and thereby exacerbated glial reactivity. These pathways were critical for long-lasting OPC accumulation even after the ablation of microglia and infiltrating monocytes. Importantly, interference with the Tlr1/2 and Cxcr3 pathways after injury alleviated reactive gliosis, increased new neuron recruitment, and improved tissue restoration.


Assuntos
Células Precursoras de Oligodendrócitos , Animais , Encéfalo , Gliose/metabolismo , Imunidade Inata , Células Precursoras de Oligodendrócitos/metabolismo , Peixe-Zebra
18.
JAMA Cardiol ; 7(3): 286-297, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34910083

RESUMO

IMPORTANCE: Myocardial injury is a common feature of patients with SARS-CoV-2 infection. However, the cardiac inflammatory processes associated with SARS-CoV-2 infection are not completely understood. OBJECTIVE: To investigate the inflammatory cardiac phenotype associated with SARS-CoV-2 infection compared with viral myocarditis, immune-mediated myocarditis, and noninflammatory cardiomyopathy by integrating histologic, transcriptomic, and proteomic profiling. DESIGN, SETTING, AND PARTICIPANTS: This case series was a cooperative study between the Ludwig Maximilian University Hospital Munich and the Cardiopathology Referral Center at the University of Tübingen in Germany. A cohort of 19 patients with suspected myocarditis was examined; of those, 5 patients were hospitalized with SARS-CoV-2 infection between March and May 2020. Cardiac tissue specimens from those 5 patients were compared with specimens from 5 patients with immune-mediated myocarditis, 4 patients with non-SARS-CoV-2 viral myocarditis, and 5 patients with noninflammatory cardiomyopathy, collected from January to August 2019. EXPOSURES: Endomyocardial biopsy. MAIN OUTCOMES AND MEASURES: The inflammatory cardiac phenotypes were measured by immunohistologic analysis, RNA exome capture sequencing, and mass spectrometry-based proteomic analysis of endomyocardial biopsy specimens. RESULTS: Among 19 participants, the median age was 58 years (range, 37-76 years), and 15 individuals (79%) were male. Data on race and ethnicity were not collected. The abundance of CD163+ macrophages was generally higher in the cardiac tissue of patients with myocarditis, whereas lymphocyte counts were lower in the tissue of patients with SARS-CoV-2 infection vs patients with non-SARS-CoV-2 virus-associated and immune-mediated myocarditis. Among those with SARS-CoV-2 infection, components of the complement cascade, including C1q subunits (transcriptomic analysis: 2.5-fold to 3.6-fold increase; proteomic analysis: 2.0-fold to 3.4-fold increase) and serine/cysteine proteinase inhibitor clade G member 1 (transcriptomic analysis: 1.7-fold increase; proteomic analysis: 2.6-fold increase), belonged to the most commonly upregulated transcripts and differentially abundant proteins. In cardiac macrophages, the abundance of C1q was highest in SARS-CoV-2 infection. Assessment of important signaling cascades identified an upregulation of the serine/threonine mitogen-activated protein kinase pathways. CONCLUSIONS AND RELEVANCE: This case series found that the cardiac immune signature varied in inflammatory conditions with different etiologic characteristics. Future studies are needed to examine the role of these immune pathways in myocardial inflammation.


Assuntos
COVID-19 , Miocardite , Humanos , Inflamação/complicações , Masculino , Miocardite/etiologia , Proteômica , SARS-CoV-2
19.
Nat Commun ; 12(1): 7011, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853297

RESUMO

Numerous chromatin remodeling enzymes position nucleosomes in eukaryotic cells. Aside from these factors, transcription, DNA sequence, and statistical positioning of nucleosomes also shape the nucleosome landscape. The precise contributions of these processes remain unclear due to their functional redundancy in vivo. By incisive genome engineering, we radically decreased their redundancy in Saccharomyces cerevisiae. The transcriptional machinery strongly disrupts evenly spaced nucleosomes. Proper nucleosome density and DNA sequence are critical for their biogenesis. The INO80 remodeling complex helps space nucleosomes in vivo and positions the first nucleosome over genes in an H2A.Z-independent fashion. INO80 requires its Arp8 subunit but unexpectedly not the Nhp10 module for spacing. Cells with irregularly spaced nucleosomes suffer from genotoxic stress including DNA damage, recombination and transpositions. We derive a model of the biogenesis of the nucleosome landscape and suggest that it evolved not only to regulate but also to protect the genome.


Assuntos
Cromatina , Epigenômica , Nucleossomos/fisiologia , Montagem e Desmontagem da Cromatina , DNA , Dano ao DNA , Engenharia , Células Eucarióticas , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas , Proteínas dos Microfilamentos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição
20.
J Extracell Vesicles ; 10(14): e12173, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34854246

RESUMO

Infection with SARS-CoV-2 is associated with thromboinflammation, involving thrombotic and inflammatory responses, in many COVID-19 patients. In addition, immune dysfunction occurs in patients characterised by T cell exhaustion and severe lymphopenia. We investigated the distribution of phosphatidylserine (PS), a marker of dying cells, activated platelets and platelet-derived microparticles (PMP), during the clinical course of COVID-19. We found an unexpectedly high amount of blood cells loaded with PS+ PMPs for weeks after the initial COVID-19 diagnosis. Elevated frequencies of PS+ PMP+ PBMCs correlated strongly with increasing disease severity. As a marker, PS outperformed established laboratory markers for inflammation, leucocyte composition and coagulation, currently used for COVID-19 clinical scoring. PS+ PMPs preferentially bound to CD8+ T cells with gene expression signatures of proliferating effector rather than memory T cells. As PS+ PMPs carried programmed death-ligand 1 (PD-L1), they may affect T cell expansion or function. Our data provide a novel marker for disease severity and show that PS, which can trigger the blood coagulation cascade, the complement system, and inflammation, resides on activated immune cells. Therefore, PS may serve as a beacon to attract thromboinflammatory processes towards lymphocytes and cause immune dysfunction in COVID-19.


Assuntos
COVID-19/sangue , Leucócitos Mononucleares/metabolismo , Fosfatidilserinas/sangue , Adulto , Plaquetas/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/fisiopatologia , Micropartículas Derivadas de Células/metabolismo , Citometria de Fluxo , Humanos , Glicoproteína IIb da Membrana de Plaquetas , Índice de Gravidade de Doença , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...